Analysis of a novel preconditioner for a class of p-level lower rank extracted systems
نویسندگان
چکیده
This paper proposes and studies the performance of a preconditioner suitable for solving a class of symmetric positive de nite systems, Âx = b, which we call p-level lower rank extracted systems (p-level LRES), by the preconditioned conjugate gradient method. The study of these systems is motivated by the numerical approximation of integral equations with convolution kernels de ned on arbitrary p-dimensional domains. This is in contrast to p-level Toeplitz systems which only apply to rectangular domains. The coe cient matrix, Â, is a principal submatrix of a p-level Toeplitz matrix, A, and the preconditioner for the preconditioned conjugate gradient algorithm is provided in terms of the inverse of a p-level circulant matrix constructed from the elements of A. The preconditioner is shown to yield clustering in the spectrum of the preconditioned matrix which leads to a substantial reduction in the computational cost of solving LRE systems. Copyright ? 2006 John Wiley & Sons, Ltd.
منابع مشابه
A novel three-stage distance-based consensus ranking method
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights ob...
متن کاملComputing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process
In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...
متن کاملA new model of (I+S)-type preconditioner for system of linear equations
In this paper, we design a new model of preconditioner for systems of linear equations. The convergence properties of the proposed methods have been analyzed and compared with the classical methods. Numerical experiments of convection-diffusion equations show a good im- provement on the convergence, and show that the convergence rates of proposed methods are superior to the other modified itera...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملComparative evaluation of microleakage of composite restorations using fifth and seventh generations of adhesive systems
Introduction: Simultaneous etching of enamel and dentin using the novel generation of adhesive systems with contracted operational steps, has shown a good clinical efficacy. The aim of this study was to evaluate the microleakage of composite restorations using the V and VII generations of adhesive systems on primary teeth. Methods: This study was performed on 45 human intact extracted primar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006